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Abstract. It is known that size dependence of virial coefficients B k (  N )  for a system of N 
molecules can be expressed in terms of virial coefficients for the infinite system. We prove 
this property by using a graphic approach. A simple method to derive BK( N )  from this 
approach is described and illustrated. 

1. Introduction 

In computer simulations of thermodynamic systems, finite numbers of particles are 
considered. To relate properties of finite systems to those of similar infinite systems, 
shape and size effects should be considered. These effects may enter into virial 
coefficients at quite low densities. There have been many studies on the finiteness 
corrections of the equation of state for classical gases (Oppenheim and Mazur 1957, 
Lebowitz and Percus 1961, Hubbard 1971a, b, Percus 1982, Kratky 1980, 1985). The 
size correction of virial coefficients in particular has been calculated extensively by 
Kratky (1985). 

The virial expansion of the pressure P for a classical gas is expressed as 
13 

P / k B T = p +  Bkpk 
k = 2  

where p = N /  Vis the density of the system. The virial coefficients B k ,  in the thermody- 
namical limit N + CO, are 

where the summation goes over all k-point stars, S(shkl)  and I ( s b k ) )  are, respectively, 
the symmetry number and the graph integral of the a t h  star of k points sLk) (Mayer 
and Mayer 1940, Uhlenbeck and Ford 1962, Domb 1974, Chen 1984). 

In the thermodynamic limit, the graph integrals Z(g) depend on the temperature 
T and the intermolecular potential. For finite systems Z(g) will also depend on the 
shape and the size of the volume. It is very difficult to study the shape correction (or 
implicit correction) for general systems. With periodic boundary conditions and for 
k s  L / R  ( R  is the range of intermolecular interactions and L is the length of the 
system), graph integrals Z(shk’) are independent of the size and the shape of the system, 
and are equal to those for the infinite system. In this case the shape effect does not 
exist, only the size effect (or explicit finiteness effect) needs to be considered, 
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One important result found for the size-dependence virial coefficients Bk( N )  is 
that they can be expressed in terms of virial coefficients for the infinite system, that is 

" 

where the summation goes over all sets of integers { p , }  = ( p , ,  p 2 ,  . . . , p , , ) ,  with p ,  5 2 
such that 

n 

1 ( p , - l ) = k - l  
, = I  

(4) 

where F (  N, { p , } )  are polynomials of N - I ,  and are independent of the intermolecular 
potential and dimensionality of the system. 

The fact that & ( N )  can be expressed in terms of B, (2 s i s  k )  for any k and for 
any system has been shown by different approaches and several methods of deriving 
B , ( N )  have been studied (Hubbard 1971a, Percus 1982, Kratky 1985). One purpose 
of this paper is to present a new proof of this property by using a graphic approach, 
as done in Q 2. We follow closely the graph terminology of Domb (1974) and a previous 
paper (Chen 1984). From this approach a simple method of calculating F (  N, { p , } )  is 
described in § 3. The coefficients we obtain are compared to those of Kratky (1985). 
A summary and discussion are given in § 4. 

2. Expressing &(A') in terms of Bi 

The kth virial coefficient Bk( N )  for a system of N molecules with periodic boundary 
conditions and for k s  L / R  can be written formally as (Chen 1984): 

where the first summation is the same as that of (3). The last summation X'jg7) is taken 
over all sets of m graphs ( m ,  of them are graphs g,) such that when all graphs are 
decomposed into stars (by cutting at all cutpoints (or cutvertices)), there are a star of 
p ,  points (denoted shP,''), a star of p 2  points (s::?'), etc, and a star of pn points (shp') .  
Some of the stars may be the same. For the set of m graphs 

and 

where w(g,) are weak lattice constants of graph g, on the complete graph of N points. 
It is impractical to calculate B,( N )  from (5) for k > 6, because the number of terms 

involved increases rapidly with k. In what follows we first show that C W{g}I{g} in 
(5) can be written as products of virial coefficients for the infinite system. This property 
simplifies our calculation of B,( N )  significantly. 

We first consider some properties of vertex colouring of graphs. For an uncoloured 
graph of p points, denoted g?' (the a t h  p-point graph), if q points of the graph are 
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coloured differently then we obtain several different coloured graphs g)::’. Here g;’$‘‘’ 
denotes the P th  coloured graph obtained from colouring q points of the graph gkp’.  
The sum of weak lattice constants of these coloured graphs is nothing but the weak 
lattice constant of gbp’ multiplied by the number of permutations of p distinct points 
taken q at a time, that is 

P 

For example, when two points of the four-vertex graph on the right-hand side of (9) 
are coloured (by 0 and 0), we have 

W ( p I )  + W ( T z 4 )  + w ( Z )  + (E) = 12w 
(9) 

When some points of a graph are coloured, the symmetry number S ( g )  of the 
coloured graph is smaller than (or equal to) that of the uncoloured graph, while the 
weak lattice constant w ( g )  of the coloured graph is larger than (or  equal to) that of 
the uncoloured graph. They are related by 

(10) w ( gh:; ’ ) = w ( gbP’) s ( g hP ’ I /  S( g2;; 1. 
Combining (8) and  (10) we obtain 

S-’(g$bg’) = s - ’ ( g k f ’ ) p ! / ( p -  q ) !  (11) 
P 

where S - ’ (  g) = [ S (  g)]-’. 
All graphs can be considered as consisting of stars. The constituent stars, considered 

as blocks, are connected together at cutvertices. The connectivity among blocks can 
be represented by a block-cutvertex (BC)  diagram (Bollobis 1979). Figure 1 shows 
the BC diagram for a graph of eight blocks. Each block is represented schematically 
by a loop. For a given BC diagram, we obtain graphs by allocating stars to the blocks. 
For instance, we allocate a star s21’ to block b , ,  a star sh“,’ to block b,, etc. There 
are many different ways to allocate a star of p points to a block having q cutvertices. 
Each method of allocation can be described by a coloured graph which is obtained 
by colouring q points of the p-point star. 

Consider a term in Xi;’, which is described by a set of m graphs {g}. There are 
n blocks in the set of m BC diagrams of the graphs. A star of p ,  points sL:lJ is allocated 
to block b, (having q1 cutvertices) in a way described by the coloured graph sb:$,l’, 
a star of p z  points s!$ is allocated to block b, (having qr cutvertices) in a way described 
by sh;’,$;’, etc. If we reallocate any star s?’ in the block b, in a different way which 
is described by s22: ’ ,  we obtain a new term in the summation I\gm)!. We 

Figure 1. A graph ( a )  consisting of eight stars and  its block-cutvenex diagram (6). 
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also get a new term if a star s‘,4~’ is replaced by s::~’, a different star having the same 
number of points. Similarly, if the stars in the blocks are rearranged (permuted), o r  
if the stars are allocated to different sets of m BC diagrams, we obtain new terms in E::)). 

Therefore, C W{g}Z{g}  can be decomposed into a sequence of summations 

Here C b c d  sums over all sets of m BC diagrams such that the total number of block is 
n. Zpermu is carried out over all different arrangements of stars shy’ in the blocks. 
Permutations of stars in equivalent blocks d o  not give new terms (in figure 1 blocks 
62,  63,  6, are equivalent, 6, amd 6, are equivalent). The third summation is taken 
over all different stars of p i  points, and the last summation is over all different methods 
that each star s?’ is allocated to the block. Note that, if some of the stars are the 
same, different { p }  may describe the same term. 

For a p-point graph g (coloured or uncoloured), the weak lattice constant of g on 
the complete graph of N points (denoted K N )  is 

w ( g ) =  N ! [ ( N - p ) ! S ( g ) ] - ’ =  N p / S ( g ) .  (13) 

We will use the shorthand notation N p  for N ! / ( N - p ) !  hereafter. If all stars that 
make up  the graph are different, the symmetry number of the graph is equal to the 
product of the symmetry numbers of the constituent coloured stars ( the  cutvertices are 
coloured). Hence 

where v, is the number of vertices of the j t h  graph. The denominator m, !m,! . . . in 
(7) is equal to one as the n stars are assumed to be different. The graph integrals I { g }  
are independent of the structure of the BC diagrams and how the stars are allocated 
to the block. They are given by (6). 

Summing over all { p }  and using ( l l) ,  we obtain 

We then sum over {CY} to obtain 

where we have used (2). For different permutations of the stars in the blocks, the only 
change in the above equation is that ( p ,  - q , ) !  should be replaced by ( p , - q , , ) ! .  (The 
star shy’ which was allocated to block 6, is now allocated to block 6, .) If we further 
sum over all different permutations, we obtain 

where fbcd ( N ,  { p , } )  depends on the set of m BC diagrams and the set ( pl , p z ,  . . . , p , , ) .  
The coefficient f h c d ( N ,  { p , } )  is a polynomial in N. It can be calculated from (16). 

To reach (17) we have assumed that all stars are different, and  hence all p ,  are 
different. If some of the stars are the same, the following symmetries should be 
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considered. (i) Some of the m graphs may have higher symmetry and additional 
symmetry factors should be included in the denominator of (14). ( i i )  Some of the m 
graphs may be the same. The factors m , ! m z ! .  . . in (7)  should be considered. (iii) 
Different { p }  or different permutations of stars may describe the same term in 

Consider a set of n stars, n{ of them are the star sa,, ni of them are the star sa>, 
etc. To take all the symmetries into account, it is most convenient to calculate 
Xpermu Z,,, W{g}Z{g} by assuming that all stars have different colours (then all stars 
are different), and dividing the result by (n: ! a ; ! .  . .), that is 

W{g)I{g}. 

where G { g }  is the constant corresponding to W{g} when all stars are considered to 
have different colours. 

If p, , p2, . . , pn are not all different, say n, of them are pI, , n, of them are plz, etc, 
equation (17) should be modified as 

n 

2 1 = (n,! n2!. . . ) - ' f b c d ( N ,  P I  , ~ 2 , .  . P n )  fl Bp; (19) 
permu (ai { P )  I = I  

We obtain (19) from (18) by summing over various stars of p ,  points ( E f a ) ) ,  having 
used the multinomial expansion 

where the summation extends over all positive integers nb, such that nl+ n;+. . . = n,. 
Equation (19) shows that the total contribution of terms described by the same set of 
BC diagrams can be expressed in terms of H i  B p , .  This property holds true for all sets 
of BC diagrams and is independent of the model of the system. It follows that B , ( N )  
can be expressed in terms of virial coefficients for the infinite system. 

3. Derivation of & ( N )  

The fact that B, (N)  can be expressed in terms of !J, €Ip, simplifies our calculations of 
& ( N )  significantly. We only have to consider one star for each p I  (i.e. one term in 

The simplest stars to be considered are the complete graphs K,, (graphs with 
pI points and p,(p, - 1)/2 lines). There is only one term in Z,,, because only one 
coloured graph is obtained when a fixed number of points are coloured from a complete 
graph. Contributions of other stars to & ( N )  are known from the property that 
contributions of different stars having the same number of points must be proportional 
to I (s;? I)/ S (  s:;t '). 

Therefore, ( 5 )  is reduced to the form of (3): 

B k ( N )  = (PI.PL. C ,  P,?) ( ~ - k ~ ( p l , p 2 , . . . 9 p n )  m = l  i (-1)m-l(m-1)!w;m)) , = I  fi ~ p ,  (21) 

where ( p , ,  p 2 , .  . . , p , )  satisfies (4) and 
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The last factor in (22) indicates that if some of the p i  are equal ( n ,  of them are pi , ,  n2 
of them are p i * ,  etc) then the symmetry factor should be included. The only quantities 
to be determined in (21) are W',"'. They are given by 

W " =  @ { K p , }  
hcd permu 

where @{ICp , }  are products of weak lattice constants (on K N )  of the m graphs obtained 
by allocating a set of n graphs Kpl, K p 2 ,  - , Kpn (all have different colours) to a set 
of m BC diagrams. The summations are over all different sets of BC diagrams and over 
all different permutations of Kp, in the blocks. 

To illustrate our method consider n = 3 for example. All possible sets of BC diagrams 
having three blocks are shown in figure 2. The first set ( a )  contains three BC diagrams 
(m = 3), the next two sets ( b ,  c) contain two BC diagrams (m = 2) and the last four sets 
( d ) - ( g )  have only one BC diagram ( m  = 1). There is only one way to allocate three 
complete graphs Kpl, Kpz ,  Kp3 to the three blocks for sets ( a ) ,  ( d )  and ( g )  (all blocks 
are equivalent for these sets of BC diagrams). There are three different methods to 
allocate KpI to the three blocks for sets ( b ) ,  (c), ( e )  and (f) (there are two equivalent 
blocks for these BC diagrams). 

It is straightforward to calculate the Wim).  They are 

Wi3) = Np, Np2Nm/pl  !p2 !p3 ! 

w:2' = ( PI P2 N ,  PI + p 2 -  1 1% + P2 P 3  N h + p , -  1 )  NPI + PI P3 N(Pl + p 3 -  1 1 Npz 

+ N ( ~ I + ~ 2 ) N ~ ~ +  N ( ~ 2 + ~ 3 ) N ~ I  + N ( p l + p 3 ) N ~ ) / P 1  ! P 2  ! P 3  ! 

WY) = [ P I P 2 P 3 ( P l  + P 2  + P 3  - 2)N(p,+p2+p3-2) + ( P I P 2  + P 2 P 3  +PIP3)N(Pl+P2+P3-l) 

(24) 

(25) 

+ N ( P I + P 2 + P 3 ) I / P l  !P2 !P3 ! (26) 

where we have used (13) and (14) (excluding the factor m! which was considered in 
(21)). The coefficient F ( N , p l , p 2 , p 3 )  in ( 3 )  can then be obtained. 

Figure 2. All sets of block-cutvertex (BC)  diagrams having three blocks ( n  = 3 ) .  Set ( a )  
has three BC diagrams; sets ( b )  and (c)  have two BC diagrams; sets ( d ) - ( g )  contain one 
BC diagram. 
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We have calculated F( N, pl , p2,  . . . , p , )  for general values of { p i }  for n S 5. For 
n = 1 ,2  and 3, they are 

F ( N ,  P I )  = N-kNp, (27) 

where k and p ,  are related by (4) and W:" are given by (24)-(26). The right-hand 
side of (28) and (29) should be divided by 2 if two of the p I  are equal, and divided 
by 3! if three p ,  are equal. For n = 4 and 5, F (  N, { p , } )  are too lengthy to be presented 
here. 

We can use our expressions of F (  N, { p , } )  to check the coefficients Bk(  N) previously 
obtained by Kratky (1985). We find that our results agree with those of Kratky 
completely for k s 7. However, there are discrepancies in B,( N). Our results which 
are not in agreement with those of Kratky are the following: 

F( N, 2,4,4) = -1 12N-'  + 3024N-'-28 784N-' + 130 704 N-4 -303 072N-5 

+339 360N-6- 141 l2ON-' 

F (  N, 3 ,3 ,4 )  = -126N-'+3339N-'- 30 996N-'+ 137 361 N-4-311 850N-5 

+343 392N-6- 141 120N-7 

F(N,2,2,3,4)=504N-'-17472N-'+196056N-'-996 576N-4+2498 832N-5 

-2951 424N-6+ 1270 080N-7 
(30) 

F (  N, 2,3,3,3)  = 189N-' -6426N-'+70 308N-3 -348 705N-4+856 170N-5 

-994 896N-6+423 360N-' 

F(N,2,2,2,2,4)=-224N1'+9520N-'-123 872N-'+701 792N-4-1903 328N-5 

+ 237 4512 N-6 - 1058 4 0 0 ~ '  

F(N, 2,2,2,3,3)  = -504N1'+21 000N-'-266 364N-3+ 1472 100N-4 

- 3909 528 N-5 + 4800 096 N-6 - 21 16 800 N-'. 

Kratky (private communication) has recalculated B,( N) using his correct formalism. 
An error in his old calculation which leads to the above discrepancies has been found. 
Our results, as expected, satisfy the sum rules conjectured and proved by Kratky (1985). 

4. Summary and discussion 

From properties of weak lattice constants of graphs we have shown that virial 
coefficients B k ( N )  for a finite system with periodic boundary conditions can be 
expressed in terms of virial coefficients for the infinite system. Contributions of various 
graphs to Bk( N) are classified according to the block-cutvertex diagrams of the graphs. 
A simple method for calculating the coefficients F (  N, p l ,  p 2 , .  . . , p, , )  for Bk( N) (see 
equation (3)) has been described and illustrated for general values of { p i } .  
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As B , ( N )  reduce to Bk in the thermodynamic limit (3) can be rewritten as 
I - 1  

A general expression F (  N,  p I ,  p z ,  . . . , p n )  can be used to determine some constant 
U?;) in B , ( N )  for all values of k. For example, (28) can be used to determine u $ , ~ ,  

and a(,:!s, 
for B,(N) ,  etc. 

The expressions F (  N, pI , p 2 ,  1 * , p , , )  for general values of { p , }  are very complicated 
and difficult to derive for n > 5 ;  but they are not too difficult to calculate for small 
values of { p , } ,  because many BC diagrams d o  not contribute to W',"' (see equation 
(23)). To determine B, (N)  and B, (N) ,  we had to calculate F ( N ,  { p , } )  for {p,} = 
(2 ,2 ,2 ,2 ,2 ,2 ) ,  (2 ,2 ,2 ,2 ,2 ,3 )  and  (2 ,2 ,2 ,2 ,2 ,2 ,2 ) ,  respectively. They are in agree- 
ment with those of Kratky (1985). 

and  a)l,l5, for Bs( N ) ;  it can also be used to determine ai:!x,, 
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